15 research outputs found

    Joint Aerial-Terrestrial Resource Management in UAV-Aided Mobile Radio Networks

    Get PDF
    This article addresses the issue of joint aerial- terrestrial resource management in mobile radio networks supported by a UAV operating as network node and discusses the potential of true integration between the terrestrial and UAV components of the network. A simulation campaign shows that, by properly optimizing the system parameters related to the UAV flight, a single UAV can bring significant improvement in network throughput for a wide service area. The use of a joint radio resource management approach, where the UAV and terrestrial base stations operate in a coordinated manner, brings significant advantages with respect to different algorithms

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications

    The Role of B5G UAV-Aided Mobile Networks

    No full text
    With the advent of 5G, several novel network paradigms and technologies have been proposed to fulfil the key requirements imposed. Flexibility, efficiency and scalability, along with sustainability and convenience for expenditure have to be addressed in targeting these brand new needs. Among novel paradigms introduced in the scientific literature in recent years, a constant and increasing interest lies in the use of unmanned aerial vehicles (UAVs) as network nodes supporting the legacy terrestrial network for service provision. Their inherent features of moving nodes make them able to be deployed on-demand in real-time. Which, in practical terms, means having them acting as a base station (BS) when and where there is the highest need. This thesis investigates then the potential role of UAV-aided mobile radio networks, in order to validate the concept of adding an aerial network component and assess the system performance, from early to later stages of its deployment. This study is intended for 5G and beyond systems, to allow time for the technology to mature. Since advantages can be manyfold, the aerial network component is considered at the network layer under several aspects, from connectivity to radio resource management. A particular emphasis is given to trajectory design, because of the efficiency and flexibility it potentially adds to the infrastructure. Two different frameworks have been proposed, to take into account both a re-adaptable heuristic and an optimal solution. Moreover, diverse use cases are taken under analysis, from mobile broadband to machine and vehicular communications. The thesis aim is thus to discuss the potential and advantages of UAV-aided systems from a broad perspective. Results demonstrate that the technology has good prospects for diverse scenarios with a few arrangements

    On the Performance Improvement of a Cellular Network Supported by an Unmanned Aerial Base Station

    No full text
    This paper studies a cellular network, where base stations move according to traffic/service needs; cov- erage and capacity offered are adaptive to the time-spatial variations of user demand. In particular, we analyze the performance of a network, where a base station is carried by a UAV (Unmanned Aerial Vehicle, sometimes also denoted as drone). The Unmanned Aerial Base Station (UABS) flies over an urban area, offering coverage and capacity to users that are not served by the Terrestrial Base Stations (TBSs); in our scenario we consider in particular video users with stringent requirements in terms of downlink throughput. The paper proposes an approach to design the trajectory of the drone, that accounts for the actual position of users that are unsatisfied by the TBSs. The approach is based on the identification of clusters made of nearby users to be served, and a simple Nearest Neighbor algorithm. The potential improvements in terms of network capacity (sum throughput) and user satisfaction are estimated, in a scenario where the UABS uses a separate band with respect to the TBSs. This performance increase can be seen as an upper bound to the improvements that would be achieved by using the same band, where the UABS would actually interfere with the TBSs

    Joint Path and Radio Resource Management for UAVs Supporting Mobile Radio Networks

    No full text
    Session B: Novel base station conceptsInternational audience—In this paper we investigate the potential advantages of using a roaming Unmanned Aerial Vehicle (UAV) as base station of a mobile radio network deployed in a city. The design of the UAV dynamic trajectory and Radio Resource Management (RRM) strategies are combined, with the goal to improve the sum throughput of the network. The comparison between joint and separate aerial-terrestrial RRM is discussed. With respect to previous papers, we identified a cost function, used to define the UAV path, improving significantly the performance

    Joint path and radio resource management for UAVs supporting mobile radio networks

    No full text
    In this paper we investigate the potential advantages of using a roaming Unmanned Aerial Vehicle (UAV) as base station of a mobile radio network deployed in a city. The design of the UAV dynamic trajectory and Radio Resource Management (RRM) strategies are combined, with the goal to improve the sum throughput of the network. The comparison between joint and separate aerial-terrestrial RRM is discussed. With respect to previous papers, we identi\ufb01ed a cost function, used to de\ufb01ne the UAV path, improving signi\ufb01cantly the performance

    Joint Aerial-Terrestrial Resource Management in UAV-Aided Mobile Radio Networks

    No full text

    Trajectories and Resource Management of Flying Base Stations for C-V2X

    No full text
    In a vehicular scenario where the penetration of cars equipped with wireless communication devices is far from 100% and application requirements tend to be challenging for a cellular network not specifically planned for it, the use of unmanned aerial vehicles (UAVs), carrying mobile base stations, becomes an interesting option. In this article, we consider a cellular-vehicle-to-anything (C-V2X) application and we propose the integration of an aerial and a terrestrial component of the network, to fill the potential unavailability of short-range connections among vehicles and address unpredictable traffic distribution in space and time. In particular, we envision a UAV with C-V2X equipment providing service for the extended sensing application, and we propose a UAV trajectory design accounting for the radio resource (RR) assignment. The system is tested considering a realistic scenario by varying the RRs availability and the number of active vehicles. Simulations show the results in terms of gain in throughput and percentage of served users, with respect to the case in which the UAV is not present

    On the Performance of a UAV-Aided Wireless Network Based on NB-IoT

    No full text
    In recent years, interest in Unmanned Aerial Vehicles (UAVs) as a means to provide wireless connectivity has substantially increased thanks to their easy, fast and flexible deployment. Among the several possible applications of UAV networks explored by the current literature, they can be efficiently employed to collect Internet-of-Things (IoT) data because the non-stringent latency and small-size traffic type is particularly suited for UAVs’ inherent characteristics. However, the implications coming from the implementation of existing technology in such kinds of nodes are not straightforward. In this article, we consider a Narrow Band IoT (NB-IoT) network served by a UAV base station. Because of the many configurations possible within the NB-IoT standard, such as the access structure and numerology, we thoroughly review the technical aspects that have to be implemented and may be affected by the proposed UAV-aided IoT network. For proper remarks, we investigate the network performance jointly in terms of the number of successful transmissions, access rate, latency, throughput and energy consumption. Then, we compare the obtained results on different and known trajectories in the research community and study the impact of varying UAV parameters such as speed and height. Moreover, the numerical assessment allows us to extend the discussion to the potential implications of this model in different scenarios. Thus, this article summarizes all the main aspects that must be considered in planning NB-IoT networks with UAVs
    corecore